十車七刊王資格孝

Ph. D. Qualification Examination Algorithms

1/3 P2年P月

- 1. (10%) Let P be a set of n points on the 2-dimensional Euclidean plane. Let T be a minimum spanning tree of P and let U be an optimal traveling-salesman tour of P.
 - (a) Prove that $|T| \le |U|$, where |T| and |U| are the lengths of T and U, respectively.
 - (b) Prove that $|U| \le 2|T|$.
- 2. (10%) Describe an algorithm that, given n integers in the range of 1 to k, preprocesses its input and then answers any query about how many of the n integers fall into range [a...b] in O(1) time. Your preprocessing algorithm should perform in O(n+k) time.
- 3. (10%) The knapsack problem is defined as follows: Given positive integers P_1 , $P_2, \ldots, P_n, W_1, W_2, \ldots, W_n$, and M, find $X_1, X_2, \ldots, X_n, 0 \le X_i \le 1$ such that

$\sum P_i X_i$ is maximized

subject to $\sum W_i X_i \leq M$.

Given a greedy method to find an optimal solution of the above problem and prove its correctness.

- 4. (20%) Let G=(V, E) be an undirected graph, in which each edge $e \in E$ has a weight w(e). Suppose that G is represented by adjacency lists.
 - (a) Design an efficient algorithm that constructs an arbitrary spanning tree of G. What's the time complexity of your algorithm?
 - (b) Design an efficient algorithm that constructs a spanning tree of G whose largest edge weight is minimum over all spanning tree of G. What's the time complexity of your algorithm?
- 5. (10%) Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \le 2$. Make your bounds as tight as possible, and justify your answer.

- (a) $T(n)=3T(n/2)+n\lg n$.
- (b) $T(n)=T(\sqrt{n})+1$.
- 6. (20%) Given two strings x[1..m] and y[1..n] and a given set of operation costs, the *edit distance* between x and y is the least expensive transformation sequence that converts x to y. Suppose the given set of operations and associated costs are listed as follows:

Operation	Description	Associated Costs
Delete	Delete a character	C_d
Replace	Replace a character	C _r
Сору	Copy a character	C _c
Insert	Insert a character	Ci
Twiddle	Interchange two adjacent characters	C_t
Kill	Kill to end of line	C _k ·

For example, the following table shows how to use the above operations to change the source string x="algorithm" into a string y="altruistic":

Operation	Target string	Source string
Сору а	a	lgorithm
Copy l	al	gorithm
Replace g by t	alt	orithm
Delete o	alt	rithm
Сору г	altr	ithm
Insert u	altru	ithm
Insert i	altrui	ithm
Insert s	altruis	ithm
Twiddle it to ti	altruisi	hm
Insert c	altruistic	hm
Kill hm	altruistic	

The cost of the above transformation sequence is $3C_c + C_r + C_d + 4C_i + C_t + C_k$.

- (a) Describe a dynamic-programming algorithm to find the edit distance from x[1..m] to y[1..n] using Insert, Delete and Replace operations
- (b) Describe an algorithm like (a) but use all operations listed in above table.

- 7. (20%) For each of the following statement, determine whether it is correct or not.
- (a) The lower bound of NP-hard problem is exponential if and on if P ≠NP is proved.
- (b) The lower bound of NP-hard problem is exponential once if $P \neq NP$ is proved.
- (c) Suppose that it is proved that the lower bound of the satisfiability problem is polynomial, we can conclude that P=NP.
- (d) It is proved that the problem of determining whether a given number is prime or not can be solved in polynomial time by a deterministic algorithm.
- (e) It is proved that the problem of determining whether a given number is prime or not is NP-complete.