博和在資格券一數位分析

BA2A

1. (20%) To solve the two-points boundary value problem

$$\begin{cases}
-u''(x) = f(x), & 0 < x < 1, \\
u(0) = u(1) = 0,
\end{cases}$$
(1a)

one may apply the finite difference method by replacing -u''(x) = f(x) by

$$\frac{-U_{i-1} + 2U_i - U_{i+1}}{h^2} = f_i, \quad 1 \le i \le m, \quad (1b)$$

at $x_i = ih$, where $h = \frac{1}{m+1}$ and $U_0 = U_{m+1} = 0$.

- (a) Discuss the local truncation error, global error, stability, consistency and convergence of (1).
- (b) Prove that (1b) converges (of order two) with respect to || ||∞-norm.

Hint: $||A^{-1}||_{\infty} = ||A^{-1}e||_{\infty}$, where $e = [1, ..., 1]^{\top}$ and $e(x) \equiv \frac{x(1-x)}{2}$ is the solution of $\begin{cases} -u''(x) = 1, \\ u(0) = u(1) = 0. \end{cases}$

- 2. (20%) Let $\{\phi_n(x)|n\geq 0\}$ be an orthogonal family of polynomials on (a,b) with weight function $w(x)\geq 0$. Given any $f(x)\in C[a,b]$ define $\|f\|_2^2=\int_a^b w(x)f^2(x)\ \mathrm{d}x$.
 - (a) Prove that the polynomial $\phi_n(x)$ has exactly n distinct real roots in (a, b).
 - (b) Show that there is uniquely the best polynomial r_n^{*}(x) of degree n to approximate f(x) by means of the least squared approximation with the given weight function w(x).
- 3. (15%) Let $a = x_0 < x_1 < x_2 < \cdots < x_n = b$ and $f \in C^{2n+2}[a,b]$ which is interpolated by a polynomial p(x) of degree 2n+1 satisfying

$$\begin{cases}
p(x_i) = f(x_i), \\
p'(x_i) = f'(x_i), & i = 0, 1, ..., n.
\end{cases}$$
(2)

Show that for the error at a point $x \in [a, b]$ holds: there exists $\xi \in [a, b]$ such that

$$f(x) - p(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} [w_{n+1}(x)]^2,$$

where $w_{n+1}(x) = \prod_{k=0}^{n} (x - x_k)$.

- 4. (20%)
 - (a) For the trapezoidal rule denoted by $I_n^{(T)}$ for evaluating $I = \int_b^a f(x) dx$ we have the asymptotic error formula

$$I - I_n^{(T)} = -\frac{h^2}{12} [f'(b) - f'(a)] + O(h^4)$$

and for the midpoint formula $I_n^{(M)}$, we have

$$I - I_n^{(M)} = \frac{h^2}{24} [f'(b) - f'(a)] + O(h^4).$$

Using these results obtain a new numerical formula \widetilde{I}_n combining $I_n^{(T)}$ and $I_n^{(M)}$ with a higher order of convergence, write out the weights to the new formula \widetilde{I}_n .

- (b) State the Gaussian-Legendre quadrature formula for the integration $\int_{-1}^{1} f(x) dx$ and list continuous function which give no error in evaluating the integral on [-1, 1] by the above Gaussian quadrature formula.
- 5. (20%) For the IVP y' = f(x, y), $y(x_0) = y_0$.
 - (a) Give the Euler method (explicit one step method) and the trapezoidal method (implicit one step method).
 - (b) Use the Euler method as a predictor and the trapezoidal method as a corrector to develop a Predictor-Corrector algorithm.
- 6. (20%) Consider the linear system Ax = b with A symmetric positive definite. Show that the Conjugate-Gradient method yields the solution after q steps, if either A has only q different eigenvalues or x₀ = 0 and b lies in a q-dimensional invariant subspace of A. Treat the case A = I + ww^T (w ≠ 0) explicitly.

```
Hint: Conjugate-Gradient method Given x_0, r_0 = b - Ax_0 = p_0, k = 0 while r_k \neq 0 \alpha_k = r_k^\intercal r_k / p_k^\intercal A p_k x_{k+1} = x_k + \alpha_k p_k r_{k+1} = b - x_{k+1} = r_k - \alpha_k A p_k end x = x_k.
```