9242A

Notation: $\chi(G)$: the chromatic number of G.

χ'(G): the edge chromatic number of G.

χ(G; x): the chromatic polynomial function of x.

T_{n,r} (Turan' graph): the complete r-partite graph with n vertices that has b parts of size a+1 and r-b parts of size a, where a=[n/r] and b=n-ra.

 $\Delta(G)$: the maximum degree of vertices of G.

L(G): the line graph of G.

A: You are only required to choose any one from the following two problems.

- Find two non-isomorphic graphs which have the same eigenvalues with the same multiplicities. (Biggs, Page 12)
- 2. Prove the following theorem (sachs, 1967) If G is a regular graph of degree k with n vertices and m = 1/2(nk) edges, then $\chi(L(G);x) = (x+2)^{m-n}\chi(G;x+2-k)$. (Biggs, Page 19)

B: You are only required to prove any three from the following seven theorems

- Turan's theorem. ([1941]) Among the n-vertex simple graphs with no r+1-clique, T_{n,r} has the maximum number of edges. (West, Page 34).
- [Caylet Formula, 1889]: There are nⁿ⁻² trees with vertex set {1,2,...,n}. (West, Page 63)
- 3. [P. Hall , 1935]) : If G is a bipartite graph with bipartition X,Y, then G has a matching of X into Y if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$. (West, Page 100)
- [Max-flow Min-Cut theorem, 1956]: In every network, the maximum value of a feasible flow equals the minimum capacity of a source/sink cut. (West, Page 162)
- 5. [Brook Theorem, 1941]. If G is a connected graph other than an odd cycle or a clique graph, then $\chi(G) \leq \Delta(G)$. (West, Page 179).
- 6. Prove the following theorem (Vizing [1964]-Gupta[1966]): If G is simple, then either $\chi' = \Delta$ or $\chi' = \Delta + 1$. (West, Page 210).
- 7. [Grinberg, 1968]: If G is a loopless plane graph with a Hamiltonian cycle C, and G has f_i faces of length i inside C and f_i faces of length i outside C, then $\sum_i (i-2)(f_i f_i) = 0$. (West, Page 275)