十東七刊王資格孝一設計理論

S2年2月

Qualify Examination on Design Theory

Definitions:

- Let G be a group of order v. A (v, k, λ) difference set in G is a set D of k elements such that the "difference" $x \cdot y^{-1}$ with $x, y \in D$ contains every non-identy exactly λ times.
- A $t-(v,k,\lambda)$ design is a set D of k subsets of a given set of v points, such that every set of t points is contained in exactly λ members of D.

Problems (20 % each)

- 1. Construct a finite field $F = GF(3^3)$ of order 27 .
- 2. Find a (27, 13, 6) difference set (hint: using the set of quadratic residues in $GF(3^3)$).
- 3. Using GF(27) to construct the projective 2-design 2-(13, 4, 1).
- 4. Using Singer's theorem to construct a (13,4,1) difference set.
- 5. Prove or disprove the existence of the following difference sets. (hint: you may use the multiplier theorem to construct the difference set)
 - (a) (7, 4, 2) difference set,
 - (b) (15, 7, 3) difference set,
 - (c) (21, 5, 1) difference set,
 - (d) (22, 7, 2) difference set,
 - (e) (73, 9, 1) difference set.
- 6. Find two non-isomorphic 2-designs with same same set of parameters (v,k,λ) .
- 7. Find an infinite sequence of $3 (v_n, k_n, \lambda_n)$ designs with $\lambda_n = 1$