Department of Applied Mathematics National Chiao Tung University Ph.D. Qualifying Examination Analysis Spring, 2018

1. Let (X, \mathcal{B}, μ) be a measure space.

(a)(10%) For any p > 0, let $f, f_1, f_2, \dots \in L^p$ such that $f_n \to f$ a.e. Then $f_n \to f$ in L^p if and only if $||f_n||_p \to ||f||_p$.

(b)(10%) As in (a) and $f_n \to f$ in L^1 . Then, for any set $A \in \mathcal{B}$, $\int_A |f_n| d\mu \to \int_A |f| d\mu$.

2.(20%) Let Ω be a bounded domain of \mathbb{R}^n . Let f be an essentially bounded function on Ω (with respect to the Lebesgue measure) with $||f||_{L^{\infty}(\Omega)} > 0$. Denote

$$a_n = \int_{\Omega} |f|^n dx, \quad n = 1, 2, \cdots.$$

Show that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\|f\|_{L^{\infty}(\Omega)}.$$

3.(20%) Let ω_n be the volume of the unit sphere in \mathbb{R}^n . Show by the Fubini theorem that

$$\omega_n = 2\omega_{n-1} \int_0^{\pi/2} \cos^n \theta d\theta,$$

 $n = 2, 3, \cdots$. Let $v_n(r)$ be the volume of the sphere with radius 0 < r < 1 in \mathbb{R}^n . Find the limit

$$\lim_{n\to\infty}\frac{v_n(r)}{\omega_n}.$$

4.(20%) Let $T:L^2(\mathbb{R})\to L^2(\mathbb{R})$ be a linear operator and $Tf\geq 0$ whenever $f\geq 0$.

(a) Show that $||T(|f|)|| \ge ||Tf||$ for all $f \in L^2(\mathbb{R})$.

(b) Show that T is bounded.

5. Let S be the space of measurable, finite-valued a.e. functions on the measure space (X, \mathcal{B}, μ) with $\mu(X) < \infty$. For $f, g \in S$, define

$$d(f,g) = \int_X \frac{|f-g|}{1+|f-g|} d\mu.$$

Show that

(a)(10%) for $f_n \in \mathcal{S}$, $f_n \to 0$ in measure if and only if $d(f_n, 0) \to 0$.

(b)(10%) S is a complete metric space with respect to d.