PhD Qualify Exam in Numerical Analysis Spring 2015

1. 10% Find the constants A_0 , A_1 , A_2 , x_0 , x_1 and x_2 such that the Gaussian quadrature rule

$$\int_{-1}^{1} f(x)dx \approx A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2)$$

is exact for f(x) in Π_5 which stands for the set of polynomials of degree less than or equal to 5.

- 2. Let $g \in C^1[a, b]$ and $p_* \in (a, b)$ with $g(p_*) = p_*$ and $|g'(p_*)| > 1$. Show that the fixed point iteration given by $p_{k+1} = g(p_k)$, for $k = 0, 1, \ldots$, does not converge, no matter how close the initial approximation p_0 is to $p_* \neq p_0$.
- 3. 20% Let I be an interval of \mathbb{R} containing t_0 . Assume that f is uniformly Lipschitz continuous with respect to y. Consider the following initial value problem (IVP):

$$\begin{cases} y'(t) = f(t, y), & t \in I \\ y(t_0) = y_0. \end{cases}$$

Let u_j be the approximation at node t_j of the exact solution $y_j \equiv y(t_j)$ and let f_j denote the value $f(t_j, u_j)$ and set $u_0 = y_0$.

(a) Find the condition on the coefficients of the following 2-stage explicit Runge-Kutta method for the IVP such that the method is second-order accuracy:

$$u_{n+1} = u_n + hb_1f_n + hb_2f(t_n + hc_2, u_n + hc_2f_n).$$

- (b) From part (a), a second-order Runge-Kutta method can be obtain by taking $b_1 = b_2 = 1/2$ and $c_2 = 1$. Find the region of absolute stability of the method.
- 4. 15% Consider the square linear system Ax = b. Let D be the diagonal matrix consisting of the diagonal part of A. The parametric Jacobi method, called the relaxation of Jacobi iteration (JOR), is expressed by

$$x_{k+1} = x_k - \omega D^{-1} (Ax_k - b).$$

Show that if Jacobi iteration converges then JOR converges for $0<\omega\leq 1.$

5. $_{20\%}$ Consider the following initial-boundary value problem of the 1-D heat equation:

(IBVP)
$$\begin{cases} u_t - u_{xx} = 0, & t > 0, \ 0 < x < 1, \\ u(x,0) = u_0(x), & 0 \le x \le 1, \\ u(0,t) = u(1,t) = 0, & t > 0. \end{cases}$$

- (a) Find an explicit finite difference method to solve the IBVP and discuss the stability properties of the method.
- (b) Construct an implicit finite difference method to improve the stability of the explicit method developed in part (a).
- 6. 10% Show that the vector x_* is a solution to the positive definite linear system Ax = b if and only if x_* minimizes

$$\varphi(x) = x^T A x - 2x^T b.$$

7. Let f be defined on [a,b], and let the nodes $a=x_0 < x_1 < x_2 = b$ be given. A quadratic spline interpolating function S consists of the quadratic polynomial

$$S_0(x) = a_0 + b_0(x - x_0) + c_0(x - x_0)^2$$
 on $[x_0, x_1]$

and the quadratic polynomial

$$S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2$$
 on $[x_1, x_2]$,

such that

- (i) $S(x_0) = f(x_0)$, $S(x_1) = f(x_1)$ and $S(x_2) = f(x_2)$,
- (ii) $S \in C^1[x_0, x_2].$
- (a) Show that conditions (i) and (\ddot{i}) lead to five equations in the six unknowns.
- (b) Impose an additional condition so that the solution is unique.