博士班资格考

103年9月

Probability, September 2014

Let $\{X_n\}$ denote a sequence of random variables and $S_n = \sum_{k=1}^n X_k$ throughout.

- 1) Construct a strictly positive martingale M_k with $M_k \to 0$ a.s. as $k \to \infty$, and verify your answer. (15 points)
- 2) $\{X_n\}$ are i.i.d. with mean 0 and variance 1. Find the limits and verify your answers. (10 points and 20 points respectively)

 $(2.1)E\frac{|S_n|}{\sqrt{n}} \rightarrow ?$, as $n \rightarrow \infty$.

(2.2) For a symmetric random walk, i.e. $P\{X_1 = 1\} = P\{X_1 = -1\} = \frac{1}{2}$,

$$\frac{\sum_{k=1}^{n} f(S_k)}{n} \to ? \text{ in } L^1, \text{ as } n \to \infty,$$

where f is a real-valued function defined on integers with $\sum_{k=-\infty}^{\infty} |f(k)| < \infty$. (Hint: $n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$.)

- 3) Let $\{A_n\}$ be a sequence of pairwise independent events. If $\sum_{n=1}^{\infty} P\{A_n\} = \infty$, then $P\{A_n \ i.o.\} = 1$. (25 points)
 (Hint: Let $Z_n = \sum_{k=1}^n I_{A_k}$. Prove that a subsequence of $\frac{Z_n}{EZ_n}$ converges to 1 a.s.)
- 4) $\{X_n\}$ are pairwise independent and identically distributed.

Prove that if $\frac{S_n - cn}{n^{1/p}}$ converges a.s. as $n \to \infty$, for some $c \in R$ and p > 0, then $E \mid X_1 \mid^p < \infty$. (20 points)

5)Let X(t), $t \ge 0$, be such that for any bounded stopping time τ , $X(\tau)$ is integrable and $EX(\tau) = EX(0)$. Prove that X(t) is a martingale. (10 points)