博士班工资格考

103.97

DEPARTMENT OF APPLIED MATHEMATICS CHIAO TUNG UNIVERSITY

Ph. D. Qualifying Examination Sep, 2014

Analysis (TOTAL 100 PTS, two pages)

Throughout this exam, dx and $|\cdot|$ represent the Lebesgue measure on

1. (50%) Prove or disprove the following statements:

 \mathbb{R}^n , and χ_E is the characteristic function of the set E.

(a) Let $f \in L^1(\mathbb{R})$ and h > 0. Then

$$\int_{-\infty}^{\infty} \left| \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt \right| dx \le \int_{-\infty}^{\infty} |f(x)| dx.$$

(b) Let $f:[a,b]\mapsto \mathbb{R}$ be of bounded variation. Then $f'\in L^1[a,b]$ and

$$\int_a^b f'(x)dx = f(b) - f(a).$$

(c) Let f_k and f be Lebesgue measurable functions defined on \mathbb{R}^n such that for any compact subset $\Omega \subset \mathbb{R}^n$,

$$\int_{\Omega} |f_k - f| dx \longrightarrow 0 \quad \text{as } k \to \infty.$$

Then $f_k \longrightarrow f$ in $L^1(\mathbb{R}^n)$.

- (d) Let $T: L^2[-\pi, \pi] \mapsto L^2[-\pi, \pi]$ be a bounded linear operator with the property: $T(\chi_E) = \alpha(\chi_E)^2$ for all Lebesgue measurable subsets E of $[-\pi, \pi]$, where α is a fixed constant. Then $T(f) = \alpha(f)^2$ for all $f \in L^2[-\pi, \pi]$.
- (e) Let $0 . Then <math>\ell^p \subset \ell^q$ and $||x||_q \le ||x||_p$ for all $x \in \ell^p$.
- 2. (10%) Find the value:

$$\sup_{\|f\|_2 \neq 0} \frac{\left| \int_0^1 \frac{f(x)}{1+x^2} dx \right|}{\left(\int_0^1 |f(x)|^2 dx \right)^{1/2}}.$$

3. (10%) Let $0 and <math>a_n \ge 0$ $(n = 1, 2, \dots)$. Prove that

$$\left(\liminf_{n\to\infty}\frac{a_1^p+a_2^p+\cdots+a_n^p}{n}\right)^{1/p}\leq \left(\limsup_{n\to\infty}\frac{a_1^q+a_2^q+\cdots+a_n^q}{n}\right)^{1/q}.$$

4. (10%) Let \mathcal{P} be the set of polynomials. Prove that

$$\sup_{f \in C[0,1]} \left(\max_{x \in [0,1]} \frac{|f(x)|}{1 + |f(x)|} \right) = \sup_{f \in \mathcal{P}} \left(\max_{x \in [0,1]} \frac{|f(x)|}{1 + |f(x)|} \right).$$

5. (10%) Let $f, f_n \in L^1(\mathbb{R})$ for $n = 1, 2, \cdots$. Suppose that

$$\int_{-\infty}^{\infty} |f_n(x) - f(x)|^5 dx \le \frac{1}{n^{3/2}} \qquad (n \ge 1).$$

Does $f_n(x)$ converge to f(x) a.e.? Verify your result.

6. (10%) Let $A = \{x \in [0,1] : x = 0.a_1a_2 \cdots \text{ and } a_n = 3 \text{ or } 4 \text{ for all } n\}$. Is A Lebesgue measurable? If so, compute |A|.