PhD Qualifying Exam in Numerical Analysis

Spring 2014

1. (20%) Consider the following linear Cauchy problem:

$$\begin{cases} y'(t) = \lambda y(t), & t > 0, \\ y(0) = 1, \end{cases}$$

with $\lambda \in \mathbb{C}$.

- (a) Give the definitions of the "absolute stability" and the "region of absolute stability" of a numerical method for approximating the linear Cauchy problem.
- (b) Find the regions of absolute stability of the forward Euler method and the backward Euler method.
- 2. (20%) Consider the following boundary value problem:

$$\left\{ \begin{array}{l} -(\alpha u')'(x) + (\beta u')(x) + (\gamma u)(x) = f(x), \quad 0 < x < 1, \\ u(0) = u(1) = 0, \end{array} \right.$$

where α , β and γ are smooth functions on [0,1] with $\alpha(x) \geq \alpha_0 > 0$ for any $x \in [0,1]$ and $f \in L^2(0,1)$.

- (a) Derive the weak formulation of the boundary value problem on the Hilbert space $H_0^1(0,1) := \{v \in L^2(0,1) : v' \in L^2(0,1), v(0) = v(1) = 0\}.$
- (b) Show that the weak formulation has a unique solution u in $H_0^1(0,1)$ if

$$-\frac{1}{2}\beta'(x) + \gamma(x) \ge 0 \quad \forall \ x \in [0, 1].$$

- (c) Let V_h be a finite-dimensional vector subspace of H¹₀(0, 1) and let {φ₁, · · , φ_N} be a basis of V_h. Please describe the Galerkin method for finding the numerical solution u_h ∈ V_h of the boundary value problem and find the associated stiffness matrix.
- (d) Prove the following result: there exists a constant C > 0 such that

$$|u - u_h|_{H^1(0,1)} \le C \min_{v_h \in V_h} |u - v_h|_{H^1(0,1)},$$

where $\mid \mid_{H^1(0,1)}$ is the norm of space $H^1_0(0,1)$,

$$|v|_{H^1(0,1)} := \left\{ \int_0^1 |v'(x)|^2 dx \right\}^{1/2}$$

3. (20%) Consider the following 1-D heat problem:

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \frac{\partial^2 u}{\partial x^2} = 0, & 0 < x < 1, \ t > 0, \\ u(0, t) = u(1, t) = 0, & t > 0, \\ u(x, 0) = u_0(x), & 0 \le x \le 1, \end{cases}$$

where constant $\nu > 0$ is the thermal conductivity.

- (a) Derive an implicit finite difference method for the 1-D heat problem by using the central difference formula for the spatial variable and the backward difference formula for the temporal variable.
- (b) Show that the implicit finite difference method derived in part (a) is unconditionally stable.

Hint: The eigenvalues λ_i of the following $n \times n$ tridiagonal matrix

$$A = \begin{bmatrix} 1+2s & -s & & & & & \\ -s & 1+2s & -s & & & & \\ & -s & 1+2s & -s & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -s & 1+2s & -s \\ & & & & -s & 1+2s \end{bmatrix}$$

are given by $\lambda_i = 1 + 2s(1 - \cos \theta_i)$, $\theta_i = \frac{i\pi}{n+1}$, $1 \le i \le n$, $s = \frac{\nu \Delta t}{h^2}$, Δt is the time step and h is the spatial grid size.

- 4. (20%) Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$, $a_{ii} \neq 0 \ \forall i$, is a given nonsingular matrix and $\mathbf{b} = (b_1, \dots, b_n)^{\top} \in \mathbb{R}^n$ a given vector.
 - (a) Describe the basic concept of linear iterative methods for solving the linear system and find the so-called iterative matrix associated with the Jacobi method.
 - (b) Prove that if $\|\mathbf{I} \mathbf{D}^{-1}\mathbf{A}\| < 1$ for any matrix norm then the sequence $\{\mathbf{x}^{(k)}\}$ generated by the Jacobi method converges to the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ for any choice of $\mathbf{x}^{(0)} \in \mathbb{R}^n$, where matrix \mathbf{D} is the diagonal part of \mathbf{A} .
- 5. (20%) Assume that $f \in C^2([a, b])$.
 - (a) Derive the following Trapezoidal formula by using Lagrange interpolating polynomial of degree 1 of f:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \Big(f(a) + f(b) \Big).$$

(b) Show that the quadrature error is given by

$$E(f) = -\frac{(b-a)^3}{12}f''(\xi), \text{ for some } \xi \in (a,b).$$