DEPARTMENT OF APPLIED MATHEMATICS CHIAO TUNG UNIVERSITY

Ph. D. Qualifying Examination Sep, 2013 Analysis (TOTAL 100 PTS, two pages)

Throughout this exam, ||x|| denotes the norm of x, $B(0;r) = \{x \in \mathbb{R}^n : ||x|| < r\}$, dx and $|\cdot|$ represent the Lebesgue measure on \mathbb{R}^n , and χ_E is the characteristic function of the set E.

- 1. (50%) Prove or disprove the following statements:
- (a) Any finite Borel measure μ defined on \mathbb{R}^n is of the form: $\mu = f(x)dx + \nu$ for some $f \in L^1(\mathbb{R}^n)$ and $\nu \perp dx$.
- (b) Let E be a Lebesgue meaurable subset of \mathbb{R}^3 . Then

$$|E| = \sup_{r>0} |E \cap B(o,r)|.$$

- (c) Let $f_n, f \in L^2[-\pi, \pi]$ for $n \geq 1$, and all of f_n, f be real-valued. If $||f_n||_2 \to ||f||_2$ and $f_n \to f$ weakly, then $f_n \to f$ in $L^2[-\pi, \pi]$.
- (d) Let $f \in C[0,1]$ and $\epsilon > 0$. Then there exists a polynomial g such that $\sup_{0 \le x \le 1} |f(x^2) g(x^2)| < \epsilon.$

(e) Let
$$0 . Then $\left(\int_{\mathbb{R}^n} |f(x)|^p dx \right)^{1/p} \ge \left(\int_{\mathbb{R}^n} |f(x)|^q dx \right)^{1/q}$.$$

2. (10%) Let μ, ν be two finite Borel measures defined on [0, 1] with

the property:

$$\int_{E} e^{-x} d\mu = \int_{E} x e^{-x} d\nu \quad \text{for all Borel sets } E \subset [0, 1].$$

Can you conclude $d\mu = xd\nu$? that is,

$$\int_0^1 f(x)d\mu = \int_0^1 x f(x)d\nu \qquad (f \ge 0).$$

Give your reason.

3. (10%) Let $\alpha > -1$ and $\omega_{\alpha}(x) = x^{\alpha}(1+e^x)^{-1}$. Prove that

$$\int_0^\infty \omega_\alpha(x)dx = \sum_{n=1}^\infty (-1)^{n+1} \int_0^\infty e^{-nx} x^\alpha dx.$$

- 4. (10%) Let $y_m = \sum_{n=1}^{\infty} a_{mn} x_n$, where $a_{mn} \in \mathbb{C}$ for $m, n \geq 1$.
 - (a) Prove that $T: x \mapsto y$ defines an operator from ℓ^2 to ℓ^1 , where $x = \{x_n\}_{n=1}^{\infty} \in \ell^2$ and $y = \{y_m\}_{m=1}^{\infty} \in \ell^1$.
 - (b) Prove that $||T|| \le \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} |a_{mn}|^2\right)^{1/2}$.
- 5. (10%) Let $g \ge 0$ be a Lebesgue measurable function defined on [0,1].

Show that

$$\int_{0}^{1} \int_{x^{2}}^{1} g(t)dtdx = \int_{0}^{1} \sqrt{t}g(t)dt.$$

- 6. (10%) Let $p \ge 1$, $0 < a < b < \infty$ and $F(x) = \left(\int_x^b f(t) dt \right)^p$, where $f \in L^1[a,b]$.
 - (a) Prove that F(x) is absolutely continuous on [a, b].
 - (b) Deduce the following equality:

$$\left(\int_a^b f(t)dt\right)^p = p \int_a^b \left(\int_x^b f(t)dt\right)^{p-1} f(x)dx.$$