DEPARTMENT OF APPLIED MATHEMATICS CHIAO TUNG UNIVERSITY

Ph. D. Qualifying Examination Feb, 2013 Analysis (TOTAL 100 PTS, two pages)

Throughout this exam, $\Phi \circ f(x) = \Phi(f(x))$, ||x|| denotes the norm of x, $B(0;r) = \{x \in \mathbb{R}^n : ||x|| < r\}$, and $C[0,1]^*$ denotes the dual space of C[0,1].

- 1. (50%) Prove or disprove the following statements:
 - (a) Suppose μ is a finite Borel measure defined on \mathbb{R}^n . Then $f(r) = \mu(B(0;r))$ defines a right continuous function on $(0,\infty)$.
 - (b) Let $g:(0,\infty)\mapsto \mathbb{R}$. If g is absolutely continuous on each finite subinterval of $(0,\infty)$, then $g'\in L^1(0,\infty)$.
 - (c) Let $\{f_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $L^2[-\pi,\pi]$. Then $\lim_{n\to\infty}\int_{-\pi}^{\pi}f_n(x)dx$ exists.
 - (d) Let $f \in C[0,1]$, $T \in C[0,1]^*$, and \mathcal{P} denote the set of all complex polynomials. Then $\inf_{g \in \mathcal{P}} |T(f) T(g)| = 0$.
 - (e) Let f_n, g_n be Lebesgue measurable functions on \mathbb{R}^3 with $|f_n(x)| \leq g_n(x)$ for all n and all x. If $g_n, g \in L^1(\mathbb{R}^3)$, $g_n(x) \to g(x)$ a.e., $g_n \to g$ in $L^1(\mathbb{R}^3)$ and $f_n(x) \to f(x)$ a.e.. Then $\lim_{n \to \infty} \int_{\mathbb{R}^3} f_n(x) dx = \int_{\mathbb{R}^3} f(x) dx$.
- 2. (10%) Let p > 1, t > 0, x > 0. Suppose λ is σ -finite on $(0, \infty)$ and $\Lambda(x) := \lambda((0, x]) < \infty$. Prove that

$$(i) \quad \lambda(\left\{y>0: \Lambda(y)\leq t\right\})\leq t; \qquad (ii) \qquad \int_0^x \Lambda^{p-1} d\lambda \geq \frac{\Lambda^p(x)}{p}.$$

3. (10%) Let $1 . Assume that <math>a_k \ge 0$ and $x_k \ge 0$ for all k. Prove that

$$\sum_{k=1}^{\infty} a_k x_k^{\frac{p-1}{p}} \le \left(\sum_{k=1}^{\infty} a_k\right)^{1/p} \left(\sum_{k=1}^{\infty} a_k x_k\right)^{\frac{p-1}{p}}.$$

4. (10%) Let $a_n \in \mathbb{C}$. Suppose $\sum_{n=1}^{\infty} a_n b_n$ converges for all $\{b_n\}_{n=1}^{\infty} \in \ell^2$. Prove that $\{a_n\}_{n=1}^{\infty} \in \ell^2$.

5. (10%) Let ν be a Borel measure on \mathbb{R} with $\nu(\{0\}) = 0$. Define $\tilde{\nu}$ by $\tilde{\nu}(\Omega) = \nu(\Omega^{-1})$ for all Borel sets Ω , where $\Omega^{-1} = \{1/x : x \in \Omega \setminus \{0\}\}$. Prove that $\tilde{\nu}$ is also a Borel measure and

$$\int_{\Omega} f(x)d\nu(x) = \int_{\Omega^{-1}} f(1/y)d\tilde{\nu}(y)$$

for all Borel sets Ω and all nonnegative ν -measurable functions f.

6. (10%) Let $k(x,t) \ge 0, k(x,t) \in C([0,1] \times [0,1])$, and

$$\int_0^1 k(x,t)dt = 1 \quad \text{for all} \quad x \in [0,1].$$

Consider the operator $K: L^2[0,1] \mapsto L^2[0,1]$ defined by

$$\mathbb{K}f(x) = \int_0^1 k(x,t)f(t)dt \qquad (f \in C[0,1]).$$

Prove that $\|\Phi \circ \mathbb{K} f\|_2 \leq \|K\| \|\Phi \circ f\|_2$ for all $f \in C[0,1]$ and all nonnegative continuous convex function Φ on \mathbb{R} .