QUALIFYING EXAM ## **FEBRUARY 21, 2013** **Instructions.** You need to show all your work in order to get full credit. When using a theorem, you must state it clearly and correctly. **Problem 1.** (10 points) Let $\operatorname{Mat}_{n \times n}(K)$ denote the space of $n \times n$ matrices with coefficients in a field K. For $A \in \operatorname{Mat}_{n \times n}(K)$ define a linear map $T_A : \operatorname{Mat}_{n \times n}(K) \to \operatorname{Mat}_{n \times n}(K)$ by $T_A(B) = AB + BA$, for $B \in \operatorname{Mat}_{n \times n}(K)$. Express the trace of T_A as a function of the trace of A. **Problem 2.** (20 points) Let R be a ring with 1. Suppose we have a sequence of left R-modules $\{M_i|i\in\mathbb{Z}\}$ and R-homomorphisms $\{d_i:M_i\to M_{i-1}|i\in\mathbb{Z}\}$ such that $d_i\circ d_{i+1}=0$, for all $i\in\mathbb{Z}$. (i) Prove that $\operatorname{im} d_{i+1} \subseteq \ker d_i$, and hence $H_i = \ker d_i / \operatorname{im} d_{i+1}$ is an R-module. Assume below that there exists a sequence of R-homomorphisms $\{s_i : M_{i-1} \to M_i | i \in \mathbb{Z}\}$ such that $d_i = d_i \circ s_i \circ d_i$, for all $i \in \mathbb{Z}$. (ii) Prove that there exist *R*-submodules N_i and P_i of ker d_i such that ker $d_i \cong N_i \oplus P_i$ with $N_i \cong H_i$, for every *i*. (Hint: Prove that $N_i = \ker(d_{i+1} \circ s_{i+1} + s_i \circ d_i)$.) **Problem 3.** (20 points) Let G be a finite group. - (i) Suppose that $g^2 = 1$ for every $g \in G$. Prove that G is abelian. - (ii) Find all G with |G| = 8 up to isomorphism. **Problem 4.** (25 points) Let $f(x) = x^4 - 2x^2 - 2$. - (i) Prove that f(x) is irreducible over \mathbb{Q} . - (ii) Prove that $\alpha = \sqrt{1 + \sqrt{3}}$ and $\beta = \sqrt{1 \sqrt{3}}$ are roots of f(x) in \mathbb{C} , and furthermore $\mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta) = \mathbb{Q}(\sqrt{3})$. What are the other roots of f(x)? - (iii) Let F be a splitting field of f(x) over \mathbb{Q} . What are the degrees of the field extensions $[F:\mathbb{Q}(\sqrt{3})]$ and $[F:\mathbb{Q}]$? - (iv) What is the Galois group of the extension $[F:\mathbb{Q}(\sqrt{3})]$? - (v) What is the Galois group of the extension $[F : \mathbb{Q}]$? Is it abelian? **Problem 5.** (25 points) Let \mathbb{F}_q denote the finite field of $q = p^m$ elements, where p is a prime. Let $GL_n(\mathbb{F}_q)$ denote the group of invertible $n \times n$ matrices with coefficients in \mathbb{F}_q and let $SL_n(\mathbb{F}_q) := \{A \in GL_n(\mathbb{F}_q) | \det A = 1\}$. (i) What is the order of the group $SL_n(\mathbb{F}_q)$? Below assume that n=2 and p>2. For an element $\xi \in \mathbb{F}_{q^2}$ we define $T_{\xi}: \mathbb{F}_{q^2} \to \mathbb{F}_{q^2}$ given by $T_{\xi}(z) = \xi z$, for $z \in \mathbb{F}_{q^2}$. 1 - (ii) Identifying the \mathbb{F}_q -vector spaces \mathbb{F}_{q^2} and $\mathbb{F}_q \oplus \mathbb{F}_q$ prove that the map $\xi \to T_\xi$ defines a group homomorphism $T : \mathbb{F}_{q^2} \setminus \{0\} \to \operatorname{GL}_2(\mathbb{F}_q)$. - (iii) Prove that there exists an element $\zeta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ such that $\zeta^q + \zeta = 0$. Conclude that $B_{\zeta} = \{1, \zeta\}$ is a \mathbb{F}_q -basis for \mathbb{F}_{q^2} . - (iv) Prove that, for $\xi \in \mathbb{F}_{q^2} \setminus \{0\}$, the matrix of the linear map T_{ξ} , with respect to the ordered basis B_{ζ} , is of the form $T_{\xi} = \begin{pmatrix} (\xi + \xi^q)/2 & \zeta(\xi \xi^q)/2 \\ (\xi \xi^q)/2\zeta & (\xi + \xi^q)/2 \end{pmatrix}$. - (v) Prove that $\mathbb{F}_{q^2} \setminus \{0\}$ has a unique subgroup \mathbb{Z}_{q+1} of order q+1, and furthermore prove that $T_{\xi} \in \mathrm{SL}_2(\mathbb{F}_q)$, for all $\xi \in \mathbb{Z}_{q+1}$.