國立交通大學應用數學研究所博士班資格考試

科目:代數

2012年2月24日

- (% 20) Let G be a finite group. Recall that a simple group is a group without proper, non-trivial normal subgroup.
 - (a) Assume that G has a subgroup H of index $\ell > 1$ such that $|G| \nmid \ell!$ (|G| denotes the order of G). Show that G is not a simple group.
 - (b) Suppose that the order of G is $5808 = 2^4 \times 3 \times 11^2$. Can G be a simple group? Explain your answer.
- 2. (% 10) Let G be a subgroup of the symmetric group S_n . Assume that G contains an odd permutation. Prove that the index $[G:G\cap A_n]=2$.
- 3. (% 10) Let D be a principal ideal domain (PID). Show that a non-zero ideal \mathcal{P} of D is a prime ideal if and only if \mathcal{P} is a maximal ideal.
- 4. (% 15) Let k be a field and let $A \in M_n(k)$ be an $n \times n$ matrix. Let R = k[A]. Note that you need to explain your answer otherwise there won't be any credit for your answer.
 - (a) Show that R is a finite dimensional vector space over k. Is it always true that $\dim_k R = n$? If yes, give a proof; otherwise, give a necessary and sufficient condition so that $\dim_k R = n$.
 - (b) In general, R may not be a field. Give a necessary and sufficient condition such that R is a field.
- 5. (% 20) Let $T: \mathbf{R}^4 \to \mathbf{R}^3$ be a linear transformation give by the following formula

$$T(\mathbf{x}) = A\mathbf{x}, \quad A = \begin{pmatrix} 54 & 74 & 62 & 66 \\ 294 & 404 & 338 & 360 \\ 48 & 68 & 56 & 60 \end{pmatrix}, \text{ and } \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

Note that A is a matrix with integer entries, therefore, $M:=T(\mathbb{Z}^4)$ is a \mathbb{Z} -submodule of \mathbb{Z}^3 .

- (a) Find a basis of the \mathbb{Z} -module M.
- (b) Let $N = \ker T \cap \mathbb{Z}^4$. Then, N is a \mathbb{Z} -submodule of \mathbb{Z}^4 . Find a basis of N.
- (c) Determine the structure of \mathbb{Z}^3/M .

- 6. (% 10) Let K be a field of positive characteristic p containing the finite field \mathbb{F}_q of q-elements with $q=p^n$ for some n. We say that a polynomial $f(x) \in K[x]$ is \mathbb{F}_q -linear if it satisfies the following two conditions
 - (i) f(x+y) = f(x) + f(y) for all $x, y \in \overline{K}$ (algebraic closure of K),
 - (ii) $f(\zeta x) = \zeta f(x)$ for all $x \in \overline{K}$ and $\zeta \in \mathbb{F}_q$.
 - Let $P(x) \in K[x]$ be a separable polynomial and let $W = \{w_1, \ldots, w_r\}$ $(r = \deg(P))$ be the set of roots of P in \bar{K} . Prove that P is \mathbb{F}_q -linear if and only if W is a finite dimensional vector space over \mathbb{F}_q .
- 7. (% 15) Let $K = \mathbb{C}(t)$ be the field of rational function in one variable and let $f(X) = X^3 2tX + t \in K[X]$.
 - (a) Show that f(X) is irreducible over K and that the Galois group of f(X) over K (meaning the Galois group of the splitting field of f(X) over K) is isomorphic to S_3 .
 - (b) Is it true that for t=a, a negative square free integer, the polynomial $f_a(X)=X^3-2aX+a$ is irreducible over $\mathbb Q$ and the Galois group of f_a over $\mathbb Q$ is also isomorphic to S_3 ?