

20 points for each problem

Convergence here is for $n \to \infty$.

1)**Kolmogorov's inequality** Let X_1, \dots, X_n be independent with $EX_k = 0$ and $var(X_k) < \infty$, for $1 \le k \le n$. Let $S_n = X_1 + \dots + X_n$, show that for any x > 0,

$$P(\max_{1 \le k \le n} | S_k | \ge x) \le \frac{var(S_n)}{x^2}.$$

2)Let X_1, \dots, X_n, \dots and X be random variables defined in the same probability space.

i) If X_n converges to X in probability, show that X_n converges to X weakly.

ii) If the random vector (X_n, X) converges to (X, X) weakly, show that X_n converges to X in probability.

3)General Bayes formula Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} on which two probability measures Q and P are given. If Q << P with Radon-Nikodym derivative Λ and X is Q-integrable, show that $X\Lambda$ is P-integrable and

$$E_Q(X \mid \mathcal{G}) = \frac{E_P(X\Lambda \mid \mathcal{G})}{E_P(\Lambda \mid \mathcal{G})}, \quad Q - a.s.$$

4)Let X_1, \dots, X_n, \dots be *i.i.d.* with $Ee^{X_1} < \infty$. Let \mathcal{F}_n denote the σ -algebra generated by X_1, \dots, X_n . Put $M_n = e^{\left(\sum_{k=1}^n X_k\right) - nh}$, where $h = ln Ee^{X_1}$. Show that i) M_n is a martingale w.r.t. $\{\mathcal{F}_n\}$.

ii) If X_1 is not a constant, then $M_n \to 0$ a.s.

5)Let $X_0, X_1, \dots, X_n, \dots$ be a Markov chain with a countable state space. Show that for 0 < k < n, we have

$$P\{X_k=i_k\mid X_l=i_l, l\neq k, 0\leq l\leq n\}=P\{X_k=i_k\mid X_{k-1}=i_{k-1}, X_{k+1}=i_{k+1}\}.$$