DEPARTMENT OF MATHEMATICS CHIAO TUNG UNIVERSITY

Ph. D. Qualifying Examination

September, 2011 Analysis (冷색)

(TOTAL 100 PTS)

〈共2頁〉

Throughout this exam, $|\cdot|$ and dx denote the Lebesgue measure.

- 1. (50%) Prove or disprove the following statements:
 - (a) Let $A \subset \mathbb{R}^2$ with $|A| = \infty$. Then

$$A \cap \{(x,y) \in \mathbb{R}^2 : n < x^2 + y^2 < n+1\} \neq \emptyset$$

holds for infinitely many integers n.

- (b) Assume that $f:[0,1] \mapsto \mathbb{R}$ is of bounded variation. Then the equation $|\{x \in [0,1] : f \text{ is continuous at } x\}| = 1$ always holds.
- (c) There does not exist $f \in L^1(\mathbb{R}) \cap C(\mathbb{R})$ such that

$$\lim_{T \to \infty} \int_{-T}^{T} f(x) dx = 0 \quad \text{and} \quad \lim_{T \to \infty} \int_{-T}^{2T} f(x) dx = -1.$$

- (d) There exists a sequence $\{f_n\}$ in $L^2[-\pi,\pi]$ such that $f_n \longrightarrow f$ in $L^2[-\pi,\pi]$ for some f, but f_n diverges in $L^1[-\pi,\pi]$.
- (e) Let $T(f) = \int_0^1 \sqrt{x} f(x) dx$. Then T defines a bounded linear functional on $L^p[0,1]$ and $||T|| = (2/(q+2))^{1/q}$, where 1 and <math>1/p + 1/q = 1.
- 2. (10%) Let $f_n \in C[a, b]$ for $n = 1, 2, \dots$, where $0 < a < b < \infty$. Suppose that the derivatives f'_n exist and are uniformly bounded on [a, b].
 - (a) Prove that $\{f_n\}$ is equicontinuous on [a,b].
 - (b) Does f_n have a uniformly convergent subsequence? Verify your answer.
- 3. (10%) Let μ be a positive Borel measure on $\mathbb R$ such that

$$|\mu(A)| \le \int_A \frac{dx}{1+x^2}$$
 for all Borel subsets A of \mathbb{R} .

Prove that there exists some $f \in L^1(\mathbb{R})$ such that $0 \le f(x) \le \frac{1}{1+x^2}$ for almost all $x \in \mathbb{R}$ and

$$\mu(A) = \int_A f(x)dx$$
 for all Borel subsets A of \mathbb{R} .

4. (10%) Let $\lambda > 0$ and F be a closed subset of (0,1). Prove that

$$\int_{F} \left(\int_{0}^{1} \frac{\delta(y)^{\lambda}}{|x-y|^{1+\lambda}} dy \right) dx \le \frac{2}{\lambda} |(0,1) \setminus F|,$$

where $\delta(y)$ denotes the distance from y to F.

- 5. (10%) Assume that f and g are two absolutely continuous functions on [a,b].
 - (a) Prove that fg is also absolutely continuous on [a, b].
 - (b) Can you conclude that

$$\int_{a}^{b} f(t)g'(t)dt + \int_{a}^{b} f'(t)g(t)dt = f(b)g(b) - f(a)g(a)?$$

Verify your answer.

6. (10%) Let $\alpha > 0$ and μ be a positive Borel measure defined on [0, 1]. Suppose that $\mu([0,1]) = 1$ and

$$\int_0^1 \theta^k d\mu(\theta) = \frac{\alpha}{k+\alpha} \qquad (k=0,1,2,\cdots).$$

Prove that

$$\int_0^1 f(\theta) d\mu(\theta) = \alpha \int_0^1 \theta^{\alpha - 1} f(\theta) d\theta \quad \text{for all } f \in C[0, 1].$$