國立交通大學應用數學研究所博士班資格考試

科目:代數

2011年2月24日

<共2頁>

- 1. Let G be a finite group of order n.
 - (a) (10 %) Let p be the smallest prime number dividing n. Let H be a subgroup of index p. Show that H is normal in G.
 - (b) (10 %) Assume that $n=29645=5\times7^2\times11^2$. Suppose that G has only one 5-Sylow subgroup. Must G be an abelian group? You need to explain your answer.
- 2. Let \mathbb{F}_q denote a finite field with q elements.
 - (a) (10 %) Let \mathbb{K} be a finite extension of \mathbb{F}_q with $[\mathbb{K} : \mathbb{F}_q] = m$ and let $f(x) = x^d + b_{d-1}x^{d-1} + \cdots + b_0 \in \mathbb{F}_q[x]$ be the minimal polynomial of $\alpha \in \mathbb{K}$ over \mathbb{F}_q . Prove that

$$\operatorname{Tr}_{\mathbb{K}/\mathbb{F}_q}(\alpha) = -\left(\frac{m}{d}\right)b_{d-1}$$
 and $\mathbf{N}_{\mathbb{K}/\mathbb{F}_q}(\alpha) = (-1)^m b_0^{m/d},$

where $\mathrm{Tr}_{\mathbb{K}/\mathbb{F}_q}$ and $\mathrm{N}_{\mathbb{K}/\mathbb{F}_q}$ denote the trace and norm from \mathbb{K} to \mathbb{F}_q .

(b) (10 %) Prove

$$x^{q^m} - x = \prod_{c \in \mathbb{F}_q} \left((\sum_{j=0}^{m-1} x^{q^j}) - c \right)$$

for any positive integer m.

3. (10 %) Let $f(X) = v_0(X - t_1) \cdots (X - t_n)$. The discriminant of f is defined by

$$D(f) = (-1)^{n(n-1)/2} v_0^{2n-2} \prod_{i \neq j} (t_i - t_j).$$

Let $n \ge 2$ be an integer and let the polynomial $f(x) = x^n + ax + b$ where a, b are the coefficients of f. Compute the discriminant D(f) of f in terms of a, b and n.

4. (15 %) Let Γ be a free abelian group of rank $n \geq 1$. Let Γ' be a subgroup of Γ which is of rank n also. Let $\{v_1, \ldots, v_n\}$ be a basis of Γ , and let $\{w_1, \ldots, w_n\}$ be a basis of Γ' . Write

$$w_i = \sum a_{ij}v_j, \quad a_{ij} \in \mathbb{Z}.$$

Show that the index $[\Gamma : \Gamma']$ is finite and is equal to the absolute value of the determinant of the matrix $A = (a_{ij})$.

- 5. Let $K = \mathbb{C}(t)$ where t is transcendental over the the complex numbers \mathbb{C} and $\mathbb{C}(t)$ is the field of rational functions over \mathbb{C} . Let n be a positive integer.
 - (a) (10 %) Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + t \in K[x]$ where $a_{n-1}, \ldots, a_1 \in \mathbb{C}[t]$ are polynomials in t such that $a_{n-1}(0) = \ldots = a_1(0) = 0$. Prove or disprove that f(x) is irreducible over K.
 - (b) (10 %) Let $g(x) = x^n + t$. Compute the Galois group of g(x) over K. (That is, the Galois group of the splitting field of g(x) over K.)
- 6. (15%) Let R be a principal ideal domain and let M be a free module of rank n over R. Let $w_1, \ldots, w_s \in M$ be given and put

$$E := \{ \phi \in \text{Hom}_{R}(M, R) \mid \phi(w_{i}) = 0, i = 1, \dots, s \}$$

where $\operatorname{Hom}_R(M,R)$ denotes the the set of R-module homomorphisms from M to R with an R-module structure given by (rf)(m) = rf(m) for all $r \in R$ and $m \in M$. Is it true that E is a free module over R? Explain your answer.