Discrete Mathematics

Entrance Examination for Ph.D. Program

May 4, 2010

Carefully justify all your answers. Answers without explanation will not receive any score.

- 1. Assume that the numbers $1, 2, \ldots, n$ are placed in that order and clockwise on the circle. Start at 1 and clockwise delete every second number until all numbers are deleted. Denote the last number deleted by J(n).
 - (a) (6%) Show that for $n \ge 1$

$$J(2n) = 2J(n) - 1,$$
 $J(2n + 1) = 2J(n) + 1$

with initial condition J(1) = 1.

(b) (14%) Let $n = \sum_{k=0}^{m} a_k 2^k$, $a_m = 1$ be the binary expansion of n. Show that

$$J(n) = \sum_{k=1}^{m} a_{k-1} 2^k + a_m.$$

- 2. (a) (15%) Let a_1, a_2, \ldots, a_{17} be a sequence of integers. Show that there exists either an increasing subsequence of length 4 or a decreasing subsequence of length 4.
 - (b) (5%) Find a generalization of part (a) for an arbitrary sequence a_1, a_2, \ldots, a_n of integers.
- 3. (a) (4%) Let D_n denote the number of derangements of n elements $\{1, \ldots, n\}$. Show that the number of permutations of the set $\{1, \ldots, n\}$ with exactly t fixpoints is given by

$$\binom{n}{t}D_{n-t}$$
.

(b) (8%) Let S be a set and denote by P_1, \ldots, P_m properties which the elements in S have or not. Set

$$A_i = \{x \in S : x \text{ has property } P_i\}.$$

Show the following generalization of the Inclusion-Exclusion principle: the number of elements from S which have exactly $t \leq m$ of the properties is given by

$$\sum |A_{i_1} \cap \dots \cap A_{i_t}| - {t+1 \choose t} \sum |A_{i_1} \cap \dots \cap A_{i_{t+1}}| + \dots + (-1)^{m-t} {m \choose t} |A_1 \cap \dots \cap A_m|,$$

where the first sum runs over all t-combinations of $\{1, \ldots, m\}$, the second sum runs over all t + 1-combinations of $\{1, \ldots, m\}$, etc.

- (c) (8%) Use part (b) to give a different proof of part (a).
- 4. The Bernoulli numbers are defined as

$$\frac{x}{e^x - 1} = \sum_{n \ge 0} B_n \frac{x^n}{n!}.$$

- (a) (2%) Find B_0 .
- (b) (7%) Let

$$S_m(n) = \sum_{k=0}^{n-1} k^m.$$

Denote by $S_n(x)$ the exponential generating function of $S_m(n)$ (as a sequence of m). Find $S_n(x)$.

(c) (7%) Use part (b) to show that

$$S_m(n) = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose k} B_k n^{m+1-k}.$$

(d) (4%) Follow from part (c) that

$$S_m(n) \sim \frac{n^{m+1}}{m+1},$$

where as usual $a_n \sim b_n$ if $\lim_{n\to\infty} a_n/b_n = 1$.

- 5. Consider a table with 2 rows and n-1 columns. Assume that the first row is $1, 2, \ldots, n-1$ and second row contains arbitrary numbers from the set $\{1, \ldots, n\}$. Construct an undirected graph G with vertices $\{1, \ldots, n\}$ by connecting the vertices in each column of the table.
 - (a) (4%) Show by an example that G is not necessarily a tree.
 - (b) (8%) If G is connected, show that it must be a tree.
 - (c) (8%) Show that every connected component of G contains at most one cycle.