九十九學年度國立交通大學應用數學系博士班入學考試試題

科目:分析

Please explain all your answers and indicate which theorems you are using!

1. For $0 < \alpha \le 1$, a function $f:[0,1] \longrightarrow \mathbb{R}$ is α -Hölder continuous if there is a positive constant C such that

$$|f(x) - f(y)| \le C|x - y|^{\alpha}, \quad \text{for all } x, y \in [0, 1].$$

- (a) (7%) Prove that $g(x) = \sqrt{x}$ for $x \in [0, 1]$ is $\frac{1}{2}$ -Hölder continuous.
- (b) (7%) Prove that $g(x) = \sqrt{x}$ for $x \in [0, 1]$ is not 1-Hölder continuous.
- 2. Suppose that $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ is a sequence of differentiable functions such that $M = \sup_{x \in \mathbb{R}, n \in \mathbb{N}} |f'_n(x)| < \infty$ and that $f(x) = \lim_{n \to \infty} f_n(x)$ exists for all $x \in \mathbb{R}$.

Prove or disprove (by giving a counterexample) the following statements:

- (a) (7%) The sequence of functions f_n is uniformly bounded for any fixed $[a,b] \subset \mathbb{R}$.
- (b) (7%) The function f is continuous on \mathbb{R} .
- (c) (7%) The function f is differentiable on \mathbb{R} .
- 3. (10%) Let Λ be a nonempty (possibly uncountable) index set. For each $\lambda \in \Lambda$, $f_{\lambda} : \mathbb{R} \longrightarrow [0,1]$ is a continuous function. Define $g(x) = \sup_{\lambda \in \Lambda} f_{\lambda}(x)$. Prove that g is Lebesgue measurable.
- 4. (a) (10%) Suppose $f:[0,1] \longrightarrow \mathbb{R}$ is an L^1 -function with respect to the Lebesgue measure m on \mathbb{R} . Compute $\lim_{n \to \infty} \int_{[0,1]} \left(\frac{nx^2}{1+nx} \right) \cdot f(x) \, dm(x)$.
 - (b) (15%) Suppose $f:[0,1] \longrightarrow \mathbb{R}$ is an L^p -function with respect to the Lebesgue measure m on \mathbb{R} , where $1 \leq p \leq \infty$. Define $g:[0,\infty] \longrightarrow [0,1]$ by $g(t) = m\left(\{x \in [0,1]: |f(x)| \geq t\}\right)$. Find all possible p such that $\int_{[0,\infty]} g(t) \, dm(t) < \infty$.
- 5. (10%) Let f_n be a sequence of functions in L^p , $1 \le p < \infty$, which converges almost everywhere to a function f in L^p . Show that f_n converges to f in L^p if and only if $||f_n||_p \to ||f||_p$.
- 6. Let μ be a measure on a nonempty set X. For each $f \in L^{\infty}(X, \mu)$, define a multiplication operator M_f on $L^2(X, \mu)$ into $L^2(X, \mu)$ by $M_f(g) = f \cdot g$ for all $g \in L^2(X, \mu)$.
 - (a) (5%) Prove that $||M_f|| = \sup\{M_f(g) : ||g||_2 \le 1\} \le ||f||_{\infty}$.
 - (b) (15%) Find a necessary and sufficient condition for $f \in L^{\infty}(X, \mu)$ such that M_f map $L^2(X, \mu)$ onto $L^2(X, \mu)$. Justify your answer!