交通大學應用數學系 98 學年度博士班入學考試

離散數學(98/05/05)

Instructions: There are **5** problems, and 20 points for each. You must provide all necessary details to earn the full credits.

- 1. (20 %) Let X be a set of n elements, and Y a set of m elements.
 - a. Find the numbers of all subsets of X, all subsets A of X with even |A|, and all subsets B of X with odd |B| respectively? (6%)
 - b. Find the following numbers:
 - all functions from X into Y; all *one to one* functions from X into Y; and all functions from X *onto* Y respectively. (7 %)
 - c. Find the number of all subsets of X containing no consecutive elements. (7 %)
- 2. (20 %) Let *n* be a positive integer.
 - a. Do either i or ii, but not both:
 - i. Find the number of positive integers $a \le n$ relative prime to n = 42. (6 %)
 - ii. Find the number of positive integers $a \le n$ relative prime to n in general. (12 %)
 - b. State the principle used in b, and give one of its generalization. (8 %)
- 3. (20 %)
 - a. Find the number of perfect coverings of a $2 \times n$ chessboard by dominoes. (10 %)
 - b. Let $N_k(n)$ be the number of sequences $(A_1, A_2, ..., A_k)$ of subsets of $\{1, 2, ..., n\}$ with $A_1 \subset A_2 \subset ... \subset A_k \subseteq [n], A_i \neq A_j$ whenever $i \neq j$. Show that $N_1(n) = 2^n$, $N_k(n) = (k+1)N_k(n-1)$, and explain that

$$N_k(n) = \sum_{0 \le j \le n} {n \choose j} N_k(j) \cdot (10\%)$$

- 4. (20 %) Let *G* be a simple graph.
 - a. If G has n vertices with at least $\binom{n-1}{2}$ edges, is G connected? (10 %)
 - b. The line $\operatorname{graph} L(G)$ of a finite simple graph G is defined on the edge set of the graph G so that two vertices are adjacent in L(G) if they are incident in the graph G as edges. Show that the line graph $L(K_5)$ of the complete graph K_5 of 5 vertices is isomorphic to the complement of the graph G as shown below. (10 %)

5. (20%) Let M be the *incidence matrix* of a graph G.

a. show that $M' \cdot M = A_L + 2I$ where A_L is the adjacency matrix of the *line graph* L(G) of G; and $M \cdot M' = A + kI$ if G is k-regular. (10 %)

b. find det(UV) where $U = \begin{bmatrix} xI_n & -M \\ 0 & I_m \end{bmatrix}$ and $V = \begin{bmatrix} I_n & M \\ M^T & xI_m \end{bmatrix}$, derive possible information? (10 %)