The entrance exam of the Ph.D. program Dept. of Applied Mathematics, NCTU

Topics: Analysis May 5, 2009

- 1. (10 points) Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces and $f: X \to Y$ be a measurable map. Let \mathcal{C} be the σ -algebra generated by f, that is, $\mathcal{C} = \{f^{-1}(B) | B \in \mathcal{B}\}$. Show that for any \mathcal{C} -measurable function $h: X \to \mathbb{R}$, that is, $f^{-1}(B) \in \mathcal{C}$ for any Borel set B in \mathbb{R} , there is a measurable function $g: Y \to \mathbb{R}$ such that $h = g \circ f$.
- 2. (30 points) Let $(f_n)_0^{\infty}$ be a sequence of functions on (0,1) defined iteratively by

$$f_0(t) = t \quad \text{for } t \in (0,1), \quad f_{n+1}(t) = \begin{cases} \frac{1}{2} f_n(3t) & \text{if } t \in (0,1/3) \\ 1/2 & \text{if } t \in [1/3,2/3] \\ \frac{1}{2} [1 + f_n(3t - 2)] & \text{if } t \in (2/3,1) \end{cases}$$

(a) (10 points) Prove that f_n converges pointwise to a continuous nondecreasing function.

Set $f = \lim_{n \to \infty} f_n$. Let μ be the Lebesgue measure on (0,1) and μ_f be the measure induced by f, that is,

$$\mu_f(A) = \mu(f^{-1}(A)).$$

- (b) (10 points) Concerning the Lebesgue decomposition of μ_f relative to μ , let μ_f^a and μ_f^s be respectively the absolutely continuous part and the singular part of μ_f . Describe μ_f^a and μ_f^s .
- (c) (10 points) Let g be a function defined by

$$q(s) = \inf\{t | f(t) > s\} \quad \forall s \in (0, 1).$$

Prove that, for any bounded function F, the Riemann Stieltjes integral of F with respect to g exists and

$$\int_0^1 F(t)dg(t) = \int_{(0,1)} F(t)\mu_f(dt).$$

- 3. (20 points) Let (X, \mathcal{A}, μ) be a measure space and $L^p(\mu)$ be the L^p -space. For $1 \leq p < q \leq \infty$, find the relation between $L^p(\mu)$ and $L^q(\mu)$ (\subseteq , \supseteq , = or incomparable) when
 - (a) (10 points) μ is a finite measure;
 - (b) (10 points) A is the σ -algebra generated by finite subsets of X and μ is a counting measure on X, that is, $\mu(A)$ is equal to the number of elements in A if A is a finite set and equal to ∞ if A is an infinite set.

- 4. (20 points) Let f be a measurable function on a measure space (X, \mathcal{A}, μ) . Prove that:
 - (a) (10 points) For $1 \le p, q \le \infty$ such that 1/p + 1/q = 1,

$$||f||_p = \sup_{||g||_q \le 1} \int fg d\mu.$$

(b) (10 points) If μ is finite, then

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$

5. (20 points) Let μ be the Lebesgue measure on (0,1) and let \mathcal{C} be the set of infinitely differentiable functions on (0,1) with compact support. Define an inner product on \mathcal{C} as follows

$$\langle f,g \rangle = \int_{(0,1)} f'(x)g'(x)\mu(dx) \quad \forall f,g \in \mathcal{C}.$$

Show that the completion of \mathcal{C} under $\langle \cdot, \cdot \rangle$ is

$$\left\{f \middle| f \text{ is absolutely continuous, } f' \in L^2(\mu), \, \lim_{x \to 0^+} f(x) = \lim_{x \to 1^-} f(x) = 0 \right\}.$$