九十七學年度國立交通大學應用數學系博士班入學考

考試科目: 分析

1. (16 points) Let \mathcal{B}^n be the collection of all Borel sets in \mathbb{R}^n and let \mathcal{L}^n be the collection of all Lebesgue measurable sets in \mathbb{R}^n . Define the function $f: \mathbb{R} \longrightarrow \mathbb{R}^2$ by

$$f(x) = (x, 0)$$
 for all $x \in \mathbb{R}$.

- (a) (8 points) Is $f \mathcal{B}^1$ - \mathcal{B}^2 -measurable? Justify your answer.
- (b) (8 points) Is $f \mathcal{L}^1$ - \mathcal{L}^2 -measurable? Justify your answer.
- 2. (24 points) Consider a sequence of functions $(f_n)_{n\in\mathbb{N}}$ defined on [0, 1] by setting

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$
 for $x \in [0, 1]$.

(a) (12 points) Show that $(f_n)_{n\in\mathbb{N}}$ is a uniformly bounded sequence on [0, 1] and evaluate

$$\lim_{n \to \infty} \int_{[0,1]} \frac{nx}{1 + n^2 x^2} \, dx.$$

- (b) (12 points) Justify if $(f_n)_{n\in\mathbb{N}}$ is uniformly convergent on [0,1].
- 3. (12 points) Define $f:[0,1] \longrightarrow [0,1]$ by

$$f(x) = \begin{cases} 0, & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 2^{n_x}, & \text{if } x \in \mathbb{Q}^c \cap [0, 1], \end{cases}$$

where n_x is the number of leading zeros in the decimal expansion of x, i.e., for $x = \sum_{k=1}^{\infty} \frac{a_k}{10^k}$ (with $a_k = 0, 1, 2, ..., 9$),

$$n_x = \begin{cases} 0, & \text{if } a_1 \neq 0, \\ \inf\{k \geq 0 : a_1 = \dots = a_k = 0, a_{k+1} \neq 0\}, & \text{othersie.} \end{cases}$$

Show that f is measurable, and find $\int_0^1 f(x) dx$.

- 4. (24 points) Let m be the Lebesgue measure on \mathbb{R}^n and let f be a measurable function on $X \subset \mathbb{R}^n$. Suppose that $\int_X |f(x)|^p dx < \infty$ for some $p \in (0, \infty)$.
 - (a) (12 points) Show that

$$\lim_{\lambda \to \infty} \lambda^p m(x \in X : |f(x)| > \lambda) = 0.$$

(b) (12 points) Show that

$$\int_X |f(x)|^p dx = \int_{[0,\infty)} p\lambda^{p-1} m(x \in X : |f(x)| > \lambda) d\lambda.$$

5. (24 points) Let f and g be two functions defined on [0,1] by

$$f(x) = \sqrt{x} \qquad \text{for } x \in [0, 1],$$

and

$$g(x) = \begin{cases} x^2 \left| \sin\left(\frac{1}{x}\right) \right|, & \text{for } x \in (0, 1], \\ 0, & \text{for } x = 0. \end{cases}$$

- (a) (12 points) Is $g \circ f$ absolutely continuous on [0, 1]? Justify your answer.
- (b) (12 points) Is $f \circ g$ absolutely continuous on [0, 1]? Justify your answer.