95磐岩度博士班入學考試

Linear Algebra

95.5.16

Notations.

- The notation $M_n(\mathbb{R})$ denotes the set of all $n \times n$ matrices over \mathbb{R} , and I_n is the identity matrix in $M_n(\mathbb{R})$.
- For a matrix A, we let A^t denote the transpose of A.

Problems.

- 1. Let $\{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 . Suppose that a linear transformation $T: \mathbb{R}^3 \mapsto \mathbb{R}^3$ is defined by T(x, y, z) = (2x + y, 2y + z, 2z).
 - (1) Write down the matrix of T relative to the standard basis. (2 points.)
 - (2) Write down the matrix of T relative to the ordered basis $\{e_3, e_2, e_1\}$. (2 points.)
 - (3) Find a matrix P such that

$$P^{-1} \begin{pmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix} P = \begin{pmatrix} a & 0 & 0 \\ 1 & a & 0 \\ 0 & 1 & a \end{pmatrix}$$

for all real numbers a. (3 points.)

(4) Prove that for any given $n \times n$ matrix A, there is a matrix Q such that

$$Q^{-1}AQ = A^t.$$

(That is, A and A^t are similar for all square matrices A.) (8 **points.**)

(5) Let

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Find a matrix Q such that $Q^{-1}AQ = A^t$. (10 points.)

2. For an $n \times n$ matrix A, define

$$\exp A = I_n + \sum_{k=1}^{\infty} \frac{A^k}{k!}.$$

Prove or disprove (by giving counterexamples) the following two assertions.

- (1) If A is nilpotent, then so is $\exp A I_n$. (8 points.)
- (2) If $\exp A I_n$ is nilpotent, then so is A. (7 points.)
- **3.** Let $V = M_n(\mathbb{R})$ be the vector space of all $n \times n$ matrices over \mathbb{R} . For a given matrix $A \in M_n(\mathbb{R})$, define a linear operator T_A on V by

$$T_A(B) = AB - BA, \quad \forall B \in V.$$

(1) Consider the case n=3 and

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Determine the eigenvalues of T_A and the associated eigenspaces. Determine also the minimal polynomial of T_A . (15 points.)

(2) For general n, consider the family

$$\mathcal{F} = \{T_A : A \in M_n(\mathbb{R}) \text{ are diagonal matrices.} \}$$

of linear operators. Prove that \mathcal{F} is simultaneously diagonalizable. (10 points.)

- **4.** Let V be an inner product space of finite dimension n over \mathbb{R} . Recall that a linear transformation $T:V\mapsto V$ is called an *isometry* if $\langle Tv_1,Tv_2\rangle=\langle v_1,v_2\rangle$ for all $v_1,v_2\in V$.
 - (1) Prove that a linear transformation T is an isometry if and only if its matrix with respect to an orthonormal basis is orthogonal. (An orthogonal matrix is a square matrix M such that $M^tM=I_n$.) (10 points.)
 - (2) Consider the case $V=\mathbb{R}^n$ with the standard inner product. Let v be a vector of unit length, and define a linear transformation T_v by

$$T_v(u) = u - 2\langle u, v \rangle v$$
 for $u \in V$.

Prove that T_v is an isometry of \mathbb{R}^n . (We call such linear transformations reflections.) (5 points.)

- (3) Consider $V=\mathbb{R}^2$ with the standard inner product. Prove that the linear transformation $S_{\theta}(x,y)=(x\cos\theta+y\sin\theta,-x\sin\theta+y\cos\theta)$ is an isometry of \mathbb{R}^2 for all real numbers θ . (We call such linear transformation rotations.) (3 points.)
- (4) Prove that every isometry of \mathbb{R}^2 is either a rotation or a reflection. (7 points.)
- 5. Let $V=M_n(\mathbb{R})$ be the vector space of all $n\times n$ matrices over \mathbb{R} , and $f:V\mapsto \mathbb{R}$ be a linear transformation. Assume that f(AB)=f(BA) for all $A,B\in V$ and $f(I_n)=n$. Prove that f is the trace function. (Hint: Consider the cases $A=e_{ij},\ B=e_{kl}$ for various i,j,k,l, where $\{e_{ij}\}$ is the standard basis for V.) (10 points.)