Ph.D. Entrance Exam: Analysis May 24, 2005

- (20%) 1. Let $f: X \longrightarrow \mathbb{R}$ be a measurable function on the measure space (X, \mathcal{A} , u).
 - (a) If f is integrable, is f² integrable? (10%)
 - (b) If f² is integrable, is f integrable? (10%)
 In each case, either give a proof or give a counterexample.
- (20%) 2. (a) If $f:[a, b] \longrightarrow \mathbb{R}$ is absolutely continuous on [a, b], then prove that f is of bounded variation over there. (10%)
 - (b) Is the converse of (a) true? Either prove it or give a counterexample. (10%)
- (20%) 3. (a) Give the complete statement of Ascoli-Arzelá theorem. Explain all technical terms in your statement. (10%)
 - (b) Use this theorem to prove the compactness of the set

$$\{f \in C[0, 1] : \max_{x} |f(x)| + \sup_{x,y} \frac{|f(x) - f(y)|}{\sqrt{|x - y|}} \le 1\}$$

in C[0, 1]. (10%)

- (20%) 4. Let $\{x_n\}$ be a sequence of vectors in a normed space X which converges weakly to x in X.
 - (a) Prove that $\sup_{n} ||x_n|| < \infty$. (5%)
 - (b) Prove that $\|\mathbf{x}\| \le \underline{\lim}_{n} \|\mathbf{x}_{n}\|$. (5%)
 - (c) Prove that x belongs to the closed linear subspace generated by the x_n 's. (5%)
 - (d) Does $\|x_n\|$ necessarily converge to $\|x\|$? Either give a proof or give a counterexample. (5%)
- (20%) 5. (a) Find all extreme points of the closed unit ball $S = \{f \in L^1[0, 1] : \|f\|_1 \le 1\}$ of $L^1[0, 1]$. (10%)
 - (b) Use (a) to prove that L¹[0, 1] is not the dual of any normed linear space. (10%)