交通大學應用數學系 93 學年度博士班入學考試

離散數學

2004.05.19

- 1. (20%) Let $B \subseteq \{(i, j) \mid 1 \le i, j \le n\}$, and define $G_{\sigma} = \{(i, i^{\sigma}) \mid 1 \le i \le n\}$ for $\sigma \in S_n$, the family of all permutations of $\{1, 2, ..., n\}$. Let
 - N_j = the number of $\sigma \in S_n$ with $|B \cap G_{\sigma}| = j$ for $1 \le j \le n$, and
 - r_k = the number of k-subsets of B such that no two of them have a common coordinate.
 - a. Find N_0 as straight as possible whenever $B = \{(i, i) | 1 \le i \le n\}$, denote it by D_n .
 - b. Justify the expression $\sum_{j=k}^{n} {j \choose k} N_j = r_k (n-k)!$, and then show that

$$\sum_{j=0}^{n} N_j x^j = \sum_{k=0}^{n} r_k (n-k)! (x-1)^k, \text{ it follows that } N_0 = \sum_{k=0}^{n} (-1)^k r_k (n-k)!.$$

- c. Derive r_k whenever $B = \{(i, i), (i, i+1 \pmod{n}) | 1 \le i \le n\}$.
- 2. (20%) Let $(x)_k = x(x-1)\cdots(x-k+1)$, then both $\{1 (= x^6), x (= x^1), x^2, ..., x^n\}$ and $\{1 (= (x)_0), x (= (x)_1), (x)_2, ..., (x)_n\}$ are basis of the vector space of all polynomials with degrees at most n over R, and hence there are coefficients S(n, k) and S(n, k)

such that
$$x^n = \sum_{k=0}^n S(n, k)(x)_k$$
, and $(x)_n = \sum_{k=0}^n s(n, k)x^k$.

- a. Find combinatorial interpretations for S(n, k), $c(n, k) = (-1)^{n-k} s(n, k)$ respectively.
- b. Find a closed form for $\sum_{n\geq k} S(n, k) \frac{x^n}{n!}$.
- c. For sequences $a_0, a_1, ..., a_n, ...$ and $b_0, b_1, ..., b_n, ...$ of complex numbers, show that the following are equivalent:

(i)
$$b_n = \sum_{k=0}^n S(n,k)a_k$$
 for all $n \ge 0$, (ii) $a_n = \sum_{k=0}^n s(n,k)b_k$ for all $n \ge 0$.

3. (20%) A system of distinct representatives (SDR) of the system $(A_1, A_2, ..., A_n)$ of sets is a sequence $(a_1, a_2, ..., a_n)$ of pairwise distinct elements with $a_i \in A_i$ for each $1 \le i \le n$. The Hall's Theorem shows that the system $(A_1, A_2, ..., A_n)$ has an SDR if and only if the Hall's condition $|U(I)| \ge |I|$ holds for each $I \subseteq \{1, 2, ..., n\}$, where $U(I) = \bigcup A_i$.

3. (continuous)

- a. Find the number of all *SDR* over the system $(A_1, A_2, ..., A_n)$ where $A_1 = \{2, ..., n\}$ and $A_i = \{1, 2, ..., i-1, i+1, ..., n\}$ for each $2 \le i \le n$.
- b. Show that $a k \times n$ latin rectangle, with k < n, can be extended to a latin square of order n by adding n-k new rows.
- c. For a fixed d, what can we conclude if $|\mathcal{U}(I)| \ge |I| d$ for each $I \subseteq \{1, 2, ..., n\}$?

 Justify your answer if the Hall's Theorem is assumed.
- 4. (25%) The Kneser graph G = K(n,d) is defined on the family of all d-elements subsets of $\{1,2,...,n\}$ such that A and B are adjacent if and only if A and B are disjoint.
 - a. Is the complement of the line graph of the complete graph K_5 isomorphic to a Kneser graph K(n,d) for some n and d? Justify your answer.
 - b. Find the chromatic numbers $\chi(K(5,2))$ and $\chi(K(6,2))$ respectively.
 - c. Find conditions for A, B such that the distance d(A,B) = i in the graph K(n,d) for i = 1, 2, 3.
 - d. Determine the smallest 3-regular graphs with girths 4 and 5 respectively.
 - 5. (15%) Start with $G_3 = C_5$ the 5-cycle, and for a given graph G_n , the new graph G_{n+1} is defined on $V(G_n) \cup V(G_n)' \cup \{z_{n+1}\}$, where the vertices $v' \in V(G_n)'$ correspond bijectively to $v \in V(G_n)$, and z_{n+1} is a single other vertex. The edges of G_{n+1} consists of 3 classes: all edges of G_n , each vertex $v' \in V(G_n)'$ is joint to precisely the neighbors of v in G_n , and z_{n+1} is adjacent to all $v' \in V(G_n)'$. The graphs $G_3 = C_5$ and G_4 are given as shown.
 - a. Find the girth of the graph G_4 , and show that the chromatic number $\chi(G_4)$ is 4.
 - **b. Show that the chromatic number** $\chi(G_n)$ of G_n is n in general.

Note: The girth of a graph is defined to be the length of the shortest cycle in it.

