十唐七刊王入冷奏記入

Ph.D. Entrance Exam: Analysis May 27, 2003

- (20%) 1. Let $f_n : [0, 1] \longrightarrow [0, \infty)$, n = 1, 2, ..., be a sequence of Lebesgue measurable functions.
 - (a) Give an example to show that $f_n \longrightarrow f$ a.e. as $n \longrightarrow \infty$ does not imply that $\int_0^1 f_n(x) dx \longrightarrow \int_0^1 f(x) dx$. (5%)
 - (b) What general relation (equality, inequality?) on the integrals of f_n and f can be concluded from $f_n \longrightarrow f$ a.e.?
 - (c) Give at least two sets of different conditions on the f_n 's for which we can conclude $\int_0^1 f_n(x) dx \longrightarrow \int_0^1 f(x) dx$ from $f_n \longrightarrow f$ a.e. (10%)
- (10%) 2. Prove that if f: [a, b] → R is Lebesgue integrable and ∫_a^xf(t)dt = 0 for all x in [a, b], then f = 0 a.e. on [a, b].
 (You are not supposed to prove this by using a more general theorem.)
- (20%) 3. Let f be a function in $L^p[0, 1]$ with $1 \le p < \infty$, and let $F(x) = \int_0^x f(t) dt$ for x in [0, 1].
 - (a) Prove that $\|F\|_{p} \le (1/p)^{1/p} \|f\|_{p}$. (10%)
 - (b) Give a necessary and sufficient condition on f for which in (a) the equality holds and prove your assertion. (10%)
- (20%) 4. (a) Prove that a linear functional on a normed space is bounded if and only if its kernel is closed. (10%)
 - (b) Determine to what extent (a) can be generalized to linear transformations between two normed spaces. Justify your assertions with proofs and examples. (10%)
- (10%) 5. Let M be a linear manifold of a normed space. Prove that M is weakly closed if and only if it is closed in norm.
- (20%) 6. (a) Prove that if $f:[0, 2\pi] \longrightarrow \mathbb{R}$ is Lebesgue integrable, then $\lim_{n\to\infty} \int_0^{2\pi} f(x) \cos nx \, dx = 0$. (10%)
 - (b) Let $n_1 < n_2 < ...$ be positive integers. Use (a) to prove that the set $E = \{x \in [0, 2\pi] : \lim_{k \to \infty} \cos(n_k x) \text{ exists}\}$ has Lebesgue measure zero. (10%)

(Hint: Consider lim_{k→∞} ∫_E sin²n_kx dx.)