Analysis

Ph.D. Entrance Exam (June 1, 2001)

- (10%) 1. Let f be a bounded linear functional on a subspace of ℓ^2 . Prove that f has a norm-preserving extension to ℓ^2 . Is such an extension unique? Either prove it or give a counter-example.
- (20%) 2. (a) Let $\{f_n\}$ be a sequence of measurable functions on [0, 1]. Prove that if $\sum_n f_n^1 |f_n| < \infty$, then $\sum_n f_n$ converges absolutely a.e. on [0, 1].
 - (b) Let $\{r_n\}$ be a sequence of all rational numbers in [0, 1] and let $\{a_n\}$ be such that $\sum_n |a_n| < \infty$. Use (a) to prove that

$$\sum_{n} \frac{a_n}{\sqrt{|x - r_n|}}$$

converges absolutely a.e. on [0, 1].

- (20%) 3. (a) Let M be a subset of C[0, 1]. Give a necessary and sufficient condition on elements in M in order that it be compact. Explain any technical terms in your statement.
 - (b) Use (a) to prove that $M = \{f : [0, 1] \longrightarrow [0, 1] : |f(x) f(y)| \le |x y|/2 \text{ for all } x, y \text{ in } [0, 1]\} \text{ is compact in } C[0, 1].$
- (20%) 4. Let $1 \le p < q < \omega$.
 - (a) Determine which of $\underline{\ell}^P$ and $\underline{\ell}^q$ contains the other. Prove your assertion.
 - (b) Do the same for $L^{p}(0, 1)$ and $L^{q}(0, 1)$.
- (30%) 5. (a) Give a complete statement of the Stone-Weierstrass theorem for algebras of real-valued functions on X. Explain any technical terms in your statement.
 - (b) Do the same for complex-valued functions. Give an example to show that the real version does not hold in the complex case.

(c) Use the Stone-Weierstrass theorem to evaluate the limit

$$\lim_{n\to\infty} (n+1) \int_0^1 x^n f(x) dx$$

for any real-valued continuous function f on [0, 1].