八十九绺等度博士班入学考试

PH.D. ANALYSIS ENTRANCE EXAM JUNE 2, 2000

89,6,2

1(20 points) (a) let $f: \mathbb{R}^2 \to \mathbb{R}$ be \mathbb{C}^2 . Show that f satisfies $\partial^2 f/\partial x \partial y(x,y) \equiv 0$ if and only if there exist \mathbb{C}^2 functions $g, h: \mathbb{R} \to \mathbb{R}$ such that f(x,y) = g(x) + h(y).

(b) Let $f: R^2 \to R$ be C^2 . Show that f satisfies $\frac{\partial^2}{\partial t^2} f(x,t) = \frac{c^2}{\partial^2} \frac{\partial^2}{\partial x^2} f(x,t)$ (vibrating string equation) if and only if there exist C^2 functions $g, h: R \to R$ such that f(x,t) = g(x+ct) + h(x-ct). Here c is a constant (the speed of sound). (Hint: make a change of variable to reduce to problem (a).)

2(20 points) (a) Let g be a nonnegative measurable function on [0,1]. Show that $\log \int g(t)dt \ge \int \log(g(t))dt$ whenever the right side is defined.

(b) Use Fubini's theorem to prove that $\int_{R^n} e^{-|x|^2} dx = \pi^{\frac{n}{2}}$. (For n=1, write $(\int_{-\infty}^{\infty} e^{-x^2} dx)^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2-y^2} dx dy$ and use polar coordinates.)

3(20 points) Let $\{f_n\}$ be a sequence of functions in $L^p, 1 , which converge almost everywhere to a function <math>f$ in L^p , and suppose that there is a constant M such that $||f_n||_p \le M$ for all n. Show that $\int f_n g \to \int f g$ for all $g \in L^q, 1/p+1/q=1$. Is the result true for p=1?

4(20 points) (a) For $1 \leq p < \infty$, we denote by l^p the space of all sequences $\{a_n\}_{n=1}^{\infty}$ such that $\|\{a_n\}\|_p \equiv (\sum_{n=1}^{\infty} |a_n|^p)^{1/p} < \infty$. Show that l^p is separable. (A metric space X is said to be separable if it has a countable dense subset.)

(b) Let l^{∞} be the space of all bounded sequences with the sup norm. Show that l^{∞} is not separable.

5(20 points) Let S be a linear subspace of C[0,1] which is closed as a subspace of $L^2[0,1]$.

(a) Show that S is a closed subspace of C[0,1].

(b) Show that there is a constant M such that for all $f \in S$ we have $||f||_2 \le ||f||_{\infty}$ and $||f||_{\infty} \le M||f||_2$.

(c) Show that for each $y \in [0,1]$ there is a function k_y in L^2 such that for each $f \in S$ we have $f(y) = \int k_y(x) f(x) dx$.