Please explain all your answers and indicate which theorems you are using!

1. (15 points) Let $\Omega \subset \mathbb{R}^2$ be open. Suppose the function $f:\Omega \longrightarrow \mathbb{R}$ has partial derivatives f_x and f_y everywhere in Ω , and these partial derivatives satisfy the inequalities

$$|f_x(x,y)| \le M, \quad |f_y(x,y)| \le M \quad \forall (x,y) \in \Omega$$

where M is a constant independent of $(x, y) \in \Omega$. Is f continuous in Ω ? Justify your answer! (Note that we do not assume that f differentiable in Ω .)

- 2. (15 points) Let $\mathbf{F} = \left(\arctan\frac{y}{x}, \frac{\ln(x^2 + y^2)}{2}\right)$ be the smooth vector field defined in a neighborhood of the rectangle $R = [1, 3] \times [-2, 2]$. Compute $\int_{\partial R} \mathbf{F} \cdot d\mathbf{x}$, where R is oriented counterclockwisely.
- 3. Let $f:[0,1] \longrightarrow \mathbb{R}$. For each $n \in \mathbb{N}$, let $x_j = \frac{j}{n}$ for $j=0,1,2,\ldots,n$. Define $f_n:[0,1] \longrightarrow \mathbb{R}$ by $f_n(x) = f(x_{j-1}) + \frac{f(x_j) f(x_{j-1})}{n}(x x_{j-1})$ for $x \in [x_{j-1}, x_j]$, for $n \in \mathbb{N}$ and $j=0,1,2,\ldots,n$. (Notice that f_n is piecewise linear.)
 - (a) Suppose that $f \in \mathcal{C}([0,1])$, that is f is continuous on [0,1]
 - i. (5 points) Show that $f_n \to f$ pointwisely on [0,1].
 - ii. (5 points) Does $f_n \to f$ uniformly on [0,1]? Justify your answer.
 - (b) (10 points) Suppose that f is Riemann integrable over [0,1]. What can be said about the pointwise and uniform convergence of f_n to f on [0,1]? Justify your answer(s)!
- 4. (15 points) Compute the following two iterated Lebesgue integrals

$$\int_{[0,1]} \int_{[1,\infty)} (e^{-xy} - 2e^{-2xy}) \, dx \, dy \qquad \text{and} \qquad \int_{[0,1]} (e^{-xy} - 2e^{-2xy}) \, dy \, dx,$$

and comment your the results in connection to the Fubini's theorem.

- 5. (15 points) Prove that $\lim_{n\to\infty}\int_{\mathbb{R}}(1-e^{-x^2/n})e^{-|x|}\sin^3x\,dx=0.$
- 6. (10 points) If $||f||_p < \infty$ for some $p \in (0, \infty)$. Prove or disprove that $||f||_p \to ||f||_\infty$.
- 7. (10 points) Suppose that $f_k, f \in L^2$ and that $\int f_k g \to \int f g, \forall g \in L^2$. (i.e. $\{f_k\}$ converges to f weakly in L^2 .) If $||f_k||_2 \to ||f||_2$, show that $f_k \to f$ in L^2 .