線性代數

101/05/08

(1) (20%) Let V and W be vector spaces, and let T: V → W be linear. If V is finite-dimensional, prove that nullity(T) + rank(T) = dim(V).
(2) Let M_{2×2} be the vector space of all real 2 × 2 matrices. Let

$$A=\begin{pmatrix}1&2\\-1&3\end{pmatrix}\text{ and }B=\begin{pmatrix}2&1\\0&4\end{pmatrix}.$$
 Define $L:M_{2\times 2}\to M_{2\times 2}$ by $L(X)=AXB$.

- (a) (5%) Prove that L is a linear transformation.
- (b) (15%) Compute the trace and the determinant of L.

(3) Let
$$A = \begin{pmatrix} 0.25 & 0.25 & 0.25 \\ 0.35 & 0.35 & 0.35 \\ 0.40 & 0.40 & 0.40 \end{pmatrix}$$
.

(a) (5%) Let λ be an eigenvalue of A . Prove that $|\lambda| \le 1$.

- (b) (10%) Compute $\lim_{n\to\infty} A^n$.
- (c) (15%) Suppose $a_0I + a_1A + a_2A^2 + A^3 = 0$. Find a_0 , a_1 and a_2 .
- (a) (20%) Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Define the adjoint of the operator T, which is symbolically denoted by T^* , by the

unique linear operator on V satisfying $\langle T(x),y\rangle=\langle x,T^*(y)\rangle$ for all $x,y\in V$. Here $\langle\ ,\ \rangle$

- is the inner product on V. Prove that the definition is well-defined.
- (b) (10%) Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be defined by $T(a_1, a_2) = (2ia_1 + 3a_2, a_1 a_2)$. Find T^* .