Analysis -Spring, 2012

Goal: To discern how one approaches an analytical problem.

I. Integral calculus 1. (i) How does one show that, in Calculus, for a continuous function $f: \mathbb{R} \to \mathbb{R}$,

the improper integral
$$\int_0^\infty f(x)dx$$
 converges if $\int_0^\infty |f(x)|dx$ converges?

Hint: $0 \le A + |A| \le 2|A|$.

$$111110. \ 0 \le A + |A| \le 2|A|$$

(ii) Let X be a Banach space, $f: \mathbb{R} \to X$, can one define Riemann integral $\int_a^b f(x)dx$,

be a Banach space,
$$j$$

where $a, b \in \mathbb{R}$?

be a Banach space,
$$f \in \mathbb{R}$$
?

$$j \in \mathbb{R}$$
?

(iii) How would one consider convergence of improper integral $\int_0^\infty f(x)dx$ then?

(iii) How would one consider convergence of improper integral
$$\int_0^\infty f(x)dx$$
 then?
(iv) Is it true that $\int_0^\infty ||f(x)||dx$ converges $\Rightarrow \int_0^\infty f(x)dx$ converges? If true, how

$$\mathbb{R}$$
, let

 $\lim_{n\to\infty} z_n \text{ exists } \Rightarrow \int_0^\infty f(x)dx \text{ converges?}$

 $\lim_{n\to\infty} y_n$ exists $\Rightarrow \int_0^\infty f(x)dx$ converges?

 $g(\int_{a}^{b} f(x)dx) = \int_{a}^{b} g(f(x))dx,$

1

$$z_n = 0$$

2. For a continuous function
$$f: \mathbb{R} \to \mathbb{R}$$
, let $z_n = \int_0^n f(x) dx$.

3. Discuss the validity of

would you justify it?

(i) Is it true that

(ii) Let $y_n = \int_0^n |f(x)| dx$. Is it true that

and find conditions on f and g for such equality.

II. Differential Calculus

1. Do you need a condition for

$$\frac{d}{dt} \int_0^\infty e^{-tx} f(x) dx = \int_0^\infty -x e^{-tx} f(x) dx?$$

2. Let f(x), $0 \le x < \infty$, be a continuous and differentiable real valued function, f(0) = 0, and that f'(x) is an increasing function of x for $x \ge 0$. Prove that

$$g(x) = \begin{cases} \frac{f(x)}{x}, & \text{if } x > 0\\ f'(0), & \text{if } x = 0 \end{cases}$$

is an increasing function of x.

III. Uniform Continuity

1. (i) Give the definition of uniform continuity for function $f: \mathbb{R} \to \mathbb{R}$.

- (ii) Give the definition of "uniformly differentiable" for function $f: \mathbb{R} \to \mathbb{R}$.
- (iii) Show that the derivative of uniformly differentiable function is uniformly continuous.
- 2. Let X be the space of all bounded uniformly continuous functions on $[0, \infty)$.

IV. Mean Value Theorem

Show that X is a Banach space.

State the mean value theorem, for

- (i) $f: \mathbb{R} \to \mathbb{R}$,
- (ii) $f: \mathbb{R} \to \mathbb{R}^n$,
- (iii) $f: \mathbb{R}^n \to \mathbb{R}^n$.

Give your comment on these versions of the mean value theorem.