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Project Description

This project focuses on the Energetic Variational Approach (EnVarA) [1], a unified frame-
work that combines the Least Action Principle (LAP) and the Maximum Dissipation
Principle (MDP). By integrating conservative and dissipative forces under fundamental
thermodynamic laws, EnVarA provides a robust methodology to derive governing equa-
tions for a wide range of physical systems, including complex fluids [2], solids, multi-phase
flows, chemical reactions, and tumor growth.

Core Ideas. In EnVarA, the total energy—often composed of kinetic and free energy—is
balanced by a dissipation functional. The approach derives forces through:

• Least Action Principle (LAP) for inertial and conservative forces.
• Maximum Dissipation Principle (MDP) for dissipative forces.

A concise form of these governing laws is:

d

dt
(K + F ) = −D, finertial = fconservative + fdissipative,

where K is kinetic energy, F is the free energy, and D is the dissipation.

Chemical Reactions within EnVarA. An exciting new direction is the application of
EnVarA to chemical reactions [3]. By introducing a reaction trajectory that tracks the
progress of each reaction, one can construct a suitable free energy F and a dissipation
functional Dchem associated with chemical transformations. This leads to an energy-
dissipation law

d

dt
F = − Dchem,
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where the reaction rate emerges naturally from a force balance condition, akin to mechan-
ical systems. Importantly, this formulation recovers the classical law of mass action under
near-equilibrium conditions, yet it also accommodates more general (non-quadratic) dis-
sipation far from equilibrium. The same approach can be extended to reaction-diffusion
equations, and in this project, we aim to explore how it can be further combined with
other physical processes (e.g., ion transport, phase-field models) into one unified varia-
tional framework.

Modeling and Applications. Participants in this program will learn:

• How to derive governing equations consistent with thermodynamics for classical
fluids, solids, and coupled chemo-mechanical systems.

• How EnVarA underpins multi-phase flow models, elasticity, reaction-diffusion sys-
tems, and more.

• Numerical methods and basic mathematical analysis to solve and investigate these
systems.

Prerequisites. A strong background in Calculus, Linear Algebra, and Differential Equa-
tions, along with basic programming (e.g., MATLAB), is highly recommended. Familiar-
ity with thermodynamics, variational principles, and numerical methods for differential
equations will be beneficial.

Plan

• Introduction: Historical background, variational methods, LAP, and MDP.
• Modeling classical systems: Newtonian fluids, elastic solids, and viscoelasticity.
• Applications to complex systems: Diffusive interfaces and multi-phase dynamics.
• Extension to chemical reactions: Reaction-diffusion systems, coupling with ion

transport and phase-field models.
• Numerical methods: Discretization and implementation of EnVarA-based models.
• Advanced topics: Real-world applications and computational challenges.

Teaching Assistant

A Teaching Assistant (TA) will be appointed to enhance student-mentor communication
and support. The TA will assist with technical questions and computational tasks and
lead discussion sessions. The appointment is to be announced before the program begins.
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Objectives

By the end of this program, participants will:

• Understand the derivation of governing equations using EnVarA for fluids, solids,
and chemical reactions.

• Gain computational and analytical skills to study reaction-diffusion problems under
the EnVarA framework.

• Investigate chemo-mechanical coupling (e.g., ion transport, phase-field models) by
extending EnVarA to multi-physics settings.

• Explore practical applications in multi-phase systems, complex fluids, and beyond.

Pre-program Reading Materials

Participants are encouraged to review the following materials before the program begins:

Continuum Mechanics and PDE Modeling
Harald Garcke et al., Mathematical Modeling [4], Ch. 5-7.
Focus: Basics of Continuum Mechanics, Reaction-diffusion and Cahn-Hilliard equations.

Analysis of Nonlinear PDEs
Juan Luis Vázquez, The Porous Medium Equation: Mathematical Theory [5], Ch. 1-4.
Focus: Analytical properties of PME solutions.

Computational PDEs
R.M.M. Mattheij et al., Partial Differential Equations: Modeling, Analysis, Computation
[6], Ch. 10-11.
Focus: Numerical methods for parabolic PDEs.

Jie Shen, Tao Tang, Li-Lian Wang, Spectral Methods: Algorithms, Analysis and Applica-
tions [7], Ch. 1-2.
Focus: Theory of spectral methods.

Lloyd N. Trefethen, Spectral Methods in MATLAB [8], Ch. 1-4.
Focus: Implementation of spectral methods.

Participants should focus on understanding fundamental concepts rather than mastering
all details.
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